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An applied example of a linear mixed model with sport data 
 

 
(Photo by Oliver Burston) 
 
The increasing complexity in data collection and its abundance means we must be 
equipped to answer more complex questions. Linear mixed models provide a flexible and 
appropriate way to do so. Using R, I will demonstrate how to build a linear mixed model 
with Australian football training data._ 
 
 
TL;DR 
 
* Linear Mixed Models (LMMs) provide a flexible and powerful way to analyse sports data 
with repeated measures over longer time frames 
* LMMs reflect a method of statistical analysis that aligns with the increasing complexity 
of data and its interrelationships 
* Fixed and random eNects are the two primary components of LMMs. Fixed eNects 
reflect variables with a systematic influence on the dependent variable (for example, rain. 
Here, rain generally makes everyone perform worse), whereas random eNects have a 
unsystematic or random influence on the dependent variable (for example, player. Here, 
adjusting results for player ensures the individuality in the analysis is optimised) 
* Using R, we can import and observe our data, check statistical assumptions and 
construct our models 
* The associated data to follow along with this analysis is available to download below 
* We build a null (baseline) model to begin our modelling, then we use a step-up model 
construction method, where we add 1 fixed eNect into the model at a time. This ensures 
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that we can test the significance and (un)importance of a fixed eNect without the 
influence of other fixed eNects 
* We use AIC and statistical significance testing to evaluate and compare our models we 
have constructed 
* After we use these methods to reach the full model to explain our dependent variable, 
we will discuss how to assess its accuracy and applicability in an applied setting in part 
two  
 
Estimated reading time: ~15 minutes 
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Models and Linear Mixed Models 
Models in sport science are an extremely useful tool for analysis. Models are primarily 
built to make inferences and explore phenomenon’s in our data, or to make predictions 
for future interventions we may make. Often, we want to understand the responses 
athletes or the team may have in response to manipulations we make in our 
interventions. For example, we change the field width in a particular drill and want to 
assess the response in team tactical metrics we collect, or we collect creatine kinase as 
an indicator of recovery and want to assess the changes in this blood marker over the 
season after incorporating ice baths one day post-match, or we want to assess how the 
presence of a swinger/floater influences tactical and technical metrics in some small 
sided games. The list goes on and on. Here, building models can help us understand how 
to get the best out of this data for understanding manipulations we make right now but 
also for future use and ‘expectations’ we may have.  
 
Linear Mixed Models (LMMs) are helpful for allowing practitioners to assess dynamic 
phenomena over longitudinal timeframes and account for individual characteristics 
(Krueger & Tian, 2004). LMMs can characterise both individual and group characteristics 
and diNerences, simultaneously. Moreover, datasets in sport are typically collected over 
days, weeks and years, with dependent observations (related datapoints) and are 
imbalanced (e.g. missing data due to injury, (de)selection, players changing positions 
between matches etc.) (Newans et al., 2022). Resultantly, mixed modelling provides a 
robust and flexible method that can assist with these limitations and adjusts the 
estimates accordingly, providing more accurate and meaningful results.  
 
Furthermore, there is contemporary thinking of behaviour in team sport that is based on 
complex systems theory. Whilst the evidence to clearly define the links with behaviour 
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and team sport have not fully been established empirically, methods of analysis must 
now reflect this way of thinking. This may manifest in some of the examples mentioned 
above but can further be extended to when we don’t have set timeframes/periods 
between data collections, players that change teams between seasons, diNerent sized 
grounds as in the AFL or rule changes that aNect styles of play and tactics (e.g. 6-6-6 rule; 
Seakins et al., 2023). Such dynamic changes week-to-week or year-to-year require an 
adaptive analytical approach, which LMMs provide.  
 
Fixed versus Random E7ects 
It will become clearer as we start to build our models below, but we should first have an 
understanding of what fixed and random eNects are and how they are diNerent. 
Importantly, both of these eNects are diNerent and are what create the 'mixed' element 
in LMMs. A LMM is a statistical technique that uses both fixed and random eNects.  
The example I will quickly use here to compare fixed and random eNects is looking at what 
factors influence the readiness to perform of soccer players after a match, at 2 diNerent 
time points (24h and 48h post match). We may have measured variables such as amount 
and quality of sleep, measures of creatine kinase and a counter movement jump. Here, 
our counter movement jump is our indicator of recovery and readiness to perform.  
 
Fixed E7ects are variables that are treated as being predictable or constant across all 
levels in the analysis. In other words, they are 'fixed' because they have a fixed or 
systematic influence on the dependent variable. The fixed eNects here would include the 
time (as a factor), the amount of sleep, the quality of sleep and creatine kinase.  
 
Random E7ects allow us to solve the inter-dependence problem and not violate the 
statistical assumption of independent data. Specifying random eNects into our LMM 
allows for a diNerent 'baseline' for each level of the random eNect. The random eNect here 
would be each player (i.e. each player would have an ID number) and as such, we 
consider each diNerent players baseline counter movement jump measure. 
Consequently, specifying player as a random eNect captures the variability within each 
player.  
 
This approach provides a more powerful, flexible and robust method to analyse complex 
datasets and allows researchers and practitioners to estimate specific variables of 
interest that can explain a dependent variable (e.g. countermovement jump scores) using 
fixed eNects whilst accounting for the variability within the levels collected (e.g. 
individual player variation) using random eNects.  
 
This article is part one of two. This first part is a guide to prepare your dataset and 
construct the linear mixed models, whilst the second part will assess the results whilst 
satisfying assumptions and importantly, understanding the results generated. The 
analysis here will follow an exploratory project that I haven’t previously analysed.  
The inspiration for this comes from wanting to provide a sport specific example of 
building a linear mixed model in a more explanatory, ‘blog’ format.  
 
My understanding of linear mixed models and their constructions can be attributed to 
performing research in this area (Tribolet et al., 2021; Fransen et al., 2022) and learning 
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about their applications in relation to my own research projects, infinite online searching, 
and also through Bodo Winters tutorials on building mixed models 
(https://bodowinter.com/tutorial/bw_LME_tutorial1.pdf and  
https://bodowinter.com/tutorial/bw_LME_tutorial2.pdf). I’d recommend reading these 
articles to get a good grasp of linear mixed models and why they are a powerful tool for 
analysing data.  
 
Data Structure 
The main purpose of using linear mixed models is because they are powerful and flexible. 
The flexibility here provides us with the ability to model repeated measures and maintain 
a level of power (i.e. maintain information in the dataset rather than remove 
observations). In sport, we collect multiple measures per athlete. This inherently violates 
the assumption of independence because the observations and data are INTER-
dependent.  
The following analysis looks at individuals repeated measures across 15 diNerent training 
conditions in Australian football practice. Hence, the measures are inter-dependent, and 
a linear mixed model is justified, and necessary.  
 
Here, I want to assess the relationship between a measure of integrative behaviour and 
traditional metrics and task constraints that we manipulate during practice (e.g. the 
width of the field, the total number of players in the drill etc). Integrative measures are 
metrics that show the individuals contribution in the network, or team. The measure I will 
assess is something called Indegree Importance (Sheehan et al., 2019). This metric is a 
component score (made up of multiple metrics whilst maintaining the overall variance) 
and simply reflects the incoming interactions regarding ball movement. Higher values 
signify that a player is easily reachable, located centrally within the team and is used by 
more players in the team (Sheehan et al., 2019). You may typically expect forwards and 
midfielders to have higher scores. The scores are standardised which means the average 
is 100 and a one standard deviation increase or decrease equals +15 or -15, respectively.  
 
Let’s first upload the key packages we will work with: 
 
* `readr`: upload csv file into R environment 
* `lmer`: to build linear mixed models 
* `tidyverse`: general suite of packages for data cleaning and wrangling 
* `GGally`: to assess and visualise any multicollinearity 
* `plotly`: create interactive plots 
* `ggpubr`: create and arrange plots 
* `lmerTest`: testing and comparing models for appropriate fit 
* `MuMIn`: mixed model assessment 
* `parameters`: computing model parameters (confidence intervals, eNect sizes) 
* `compute.es`: computing the eNect sizes associated with models 
* `sjPlot`: plotting model outcomes 
* `HLMdiag`: plotting model outcomes   
 
```{r Upload packages, eval=FALSE} 
## eval = FALSE hides the code output from this chunk, hides online output 

https://bodowinter.com/tutorial/bw_LME_tutorial1.pdf
https://bodowinter.com/tutorial/bw_LME_tutorial2.pdf
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packages <- c("readr","tidyverse", "ggplot2", "lme4",  
              "GGally", "lmerTest", "MuMIn", "compute.es", "sjPlot", "parameters",  
              "HLMdiag","eNectsize", "ggpubr", "plotly") 
 
# Check which packages are not installed  
packages_installed <- packages %in% rownames(installed.packages()) 
 
# Install packages not yet installed 
for (i in 1:length(packages)) { 
   
  if (packages_installed[i] == FALSE) { 
    install.packages(packages[i]) 
    print(packages[i]) 
  } 
}   
 
## Load packages 
lapply(packages, require, character.only = TRUE) 
 
if (sum(packages %in% .packages(TRUE)) < length(packages)) { 
  print("Issue loading packages") 
} else { 
  print("Packages loaded successfully") 
} 
```  
 
Next, we need to upload the data into R, 
 
```{r Load data} 
# Load data into our workspace 
library(readr) 
ind_df2 <- read_csv("Individual.csv") 
``` 
 
and rename our key variables we are looking at. Here, we have: 
 
* `row_ID`: ID of each row 
* `condition`: ID of the condition 
* `player`: player ID number 
* `spp`: space per player in metres squared 
* `width`: width of the drill in metres 
* `length`: length of the drill in metres 
* `total_players`: the total number of players in the drill (both teams)  
* `time`: the time in the drill  
* `indegree`: indegree imporance 
* `kick_eN`: kick eNiciency (as a percentage) 
* `hb_eN`: handball eNiciency (as a percentage) 
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* `goals`: the number of goals 
* `marks`: the number of marks 
 
```{r Rename Variables and Plots} 
row_id <- ind_df2$Row_ID 
condition <- ind_df2$Condition_Identifier 
player <- as.factor(ind_df2$Player_ID) 
spp <- ind_df2$Space_per_Player 
width <- ind_df2$Width 
length <- ind_df2$Length 
total_players <- ind_df2$Total_Players 
time <- ind_df2$Time_Secs 
indegree <- ind_df2$Indegree_Quotient_Score 
kick_eN <- ind_df2$IND_Kick_ENiciency 
goals <- ind_df2$Goals 
marks <- ind_df2$Marks 
 
## make NAs 0 in the handball percentage column ---- 
ind_df2$IND_HB_ENiciency[is.na(ind_df2$IND_HB_ENiciency)] <- 0 
hb_eN <- ind_df2$IND_HB_ENiciency 
 
ind_df2$IND_Kick_ENiciency[is.na(ind_df2$IND_Kick_ENiciency)] <- 0 
kick_eN <- ind_df2$IND_Kick_ENiciency 
``` 
 
Next, I want to show you why we need to use a linear mixed model to analyse this dataset. 
The following plots show the repeated measurements we have collected on each 
indvidual player and how there are diNerent numbers of measurements for each player.  
Additionally, we can see the average value for Indegre Importance for each player and 
each condition is diNerent. This means that to optimise the accuracy and applicability of 
this data to explain our Indegree Importance numbers, we should use a statistical 
approach that can help explain the baseline diNerences at both player and condition 
levels (and specify them as random eNects when we build our models).  
 
``` {r Observe independence through plots} 
## Plots 
# repeated measures by player  
library(tidyverse) # needed to build plots using ggplot 
ggplot(ind_df2, aes(player, indegree)) +  
  geom_point(size = 3, 
             shape = 21, 
             fill = "grey", 
             color = "black") + 
  theme_classic() + 
  theme(axis.text.x = element_text(angle = 60, hjust = 1, vjust = 1)) +  
  ylab("Indegree Importance") + xlab("Player") + 
  labs(title = "Repeated measures by player",  
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       subtitle = "Indegree by Player",  
       caption = "Figure 1. We see that there are players with only 1 observation (player 19),  
       whilst some have 2 observations (players 3 and 25) and others have more (e.g. player 
12 has 12 obs)") 
## Note to self: labs arguments don't show in viewer in R 
 
# variation by individual 
ggplot(ind_df2, aes(player, indegree)) + 
  geom_boxplot() +  
  theme_classic() + 
  ylab("Indegree Importance") + xlab("Player") + 
  theme(axis.text.x = element_text(angle = 60, hjust = 1, vjust = 1)) + 
  labs(title = "Box plot variation by player",  
       subtitle = "Shows the variation for Indegree Importance for each player",  
       caption = "Figure 2. We see diNerent amounts of variation for each player.  
       Note that players with 1 observation look like a bold horizontal line") 
 
# variation by condition 
ggplot(ind_df2, aes(group = condition, indegree)) + 
  geom_boxplot() +  
  ylab("Condition") + xlab("Indegree Importance") + 
  scale_y_continuous(breaks = c(1:15)) + 
  labs(title = "Box plot variation by condition",  
       subtitle = "Show the variation for Indegree Importance for each condition",  
       caption = "Figure 3. We see diNerent amounts of variation for each condition  
       Note that even though we standardised scores for Indegree, there is variation 
       in the average across the conditions") 
``` 
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After observing these plots, it should be a little clearer to see why we need to construct 
our model to account for individual and conditional level relationships. As there is a 
baseline variation due to each player and each conditions idiosyncrasies, we must 
account for these to improve our model outcomes and estimations. I will speak about 
this more during the model construction.  
 
## Assumptions  
All statistical assessments assume some characteristics about the data you are 
analysing. These are broadly called *assumptions*. We must acknowledge and evaluate 
these assumptions in our data, otherwise we may aNect our ability to confidently make 
conclusions about what the data is saying (in the way of inaccuracy, biased or inflated 
outcomes), as the results are essentially unreliable and misleading. Next, we will go 
through and evaluate each of the assumptions relevant to a linear mixed model.  
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There are a few assumptions for LMMs that we must check to see if our model fits the 
data well: 
1. Independence 
2. Linearity of predictors 
3. Multicollinearity 
4. Normality of residuals (performed after model construction)  
5. Homoskedasticity (performed after model construction) 
6. Influential datapoints (although not an assumption, it should be an important check 
performed on the results) 
 
Independence 
We have already established that our data is repeated and dependent (Figures 1, 2 & 3). 
Each data point for each player is related. Hence, our data already violates this 
assumption. Consequently, we must use a linear mixed model, which can be used when 
independence is violated.  
 
 
Linearity 
Next in our data structure is the relationships between our predictor variables with 
Indegree Importance. This relates to the assumption of linearity. After all, they are called 
linear mixed models, so the relationship between our predictors and Indegree 
Importance generally needs to be linear. Our predictor variables are investigating the 
impact or influence on Indegree Importance. They include drill width, drill length, space 
per player, the total number of players, time, handball eNiciency, kick eNiciency, marks 
and goals.  
 
```{r Assumption of Linearity} 
library(ggpubr) 
# indegree by width 
p1 <- ggplot(ind_df2, aes(width, indegree)) + 
  geom_point() + 
  geom_smooth(method = "lm") + 
  stat_cor(method = "pearson") + ## show correlation value 
  ylab("Indegree") + xlab("Width (m)") + 
  theme_classic() + 
  labs(title = "Width (m) and 
Indegree Importance")  
 
# indegree by length 
p2 <- ggplot(ind_df2, aes(length, indegree)) + 
  geom_point() + 
  geom_smooth(method = "lm") + 
  stat_cor(method = "pearson") + ## show correlation value 
  ylab("Indegree") + xlab("Length (m)") + 
  theme_classic() + 
  labs(title = "Length (m) and 
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Indegree Importance")  
 
# indegree by space per player 
p3 <- ggplot(ind_df2, aes(spp, indegree)) + 
  geom_point() + 
  geom_smooth(method = "lm") + 
  stat_cor(method = "pearson") + ## show correlation value 
  ylab("Indegree") + xlab("Space per Player (m2)") + 
  theme_classic() + 
  labs(title = "Space per player (m2)  
and Indegree Importance")  
 
# indegree by total number of players 
p4 <- ggplot(ind_df2, aes(total_players, indegree)) + 
  geom_point() + 
  geom_smooth(method = "lm") + 
  stat_cor(method = "pearson") + ## show correlation value 
  ylab("Indegree") + xlab("Total Players (n)") + 
  theme_classic() + 
  labs(title = "Total number of players (n) 
and Indegree Importance") 
 
## arrange all of the above plots into 1 image for simplicity 
ggarrange(p1, p2, p3, p4, ncol = 2, nrow = 2, labels = c("A", "B", "C", "D")) 
 
## Although I won't perform it here, check the general linearity of time,  
## handball and kick eNiciency, marks and goals.   
## The process is the same as above 
``` 
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Multicollinearity 
Next, we must also consider multicollinearity in our dataset. Multicollinearity is when two 
variables are highly correlated. If we don't investigate multicollinearity, we can't separate 
and interpret the eNects of each one of the variables. Additionally,  
we must assess this to make sure we aren’t inflating what is called a type I error – finding 
significant and meaningful eNects in the data when they don’t actually exist. For example, 
say we want to measure the things that contribute to the number of disposals a player 
accumulates in a game. We measure kicks, handballs, goals and behinds (goals and 
behinds are kicks of course). Here, it is likely that the relationship between kicks and 
handballs with disposals is quite high, because they both contribute to the same 
measure. As such, a correlation sees them as ‘the same thing’ statistically.  
If the relationship/correlation between the two measures is over 0.8, they are statistically 
‘the same variable’, and as such, we need to remove one. Otherwise, we inflate the 
chance of finding something significant by essentially building the model with the same 
metric twice.   
Consequently, we are looking for collinearity between our predictor values (as previously 
listed). We will use the GGally package to visualise the correlations in our dataset in a 
correlation matrix.  
 
```{r ind_df2} 
p5 <- GGally::ggcorr(ind_df2[,6:29], size = 2, label = TRUE, label_round = 2, label_size = 
2) 
plotly::ggplotly(p5) 
# no collinearity between our predictors, so we can include each of them together if 
required 
``` 
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Using our predictor variables, here are no concerns of multicollinearity that we can see 
here. However, if we were using both Handball totals (HB_Total) and handball eNiciency 
(HB_EN) as predictors in our model, we would have to remove one of them due to the high 
correlation (dark red colour, value = 0.94). Hence we would have to remove one from our 
analysis. Here, we would assess which one is more highly correlated with Indegree 
Importance and keep the one that has the higher correlation value.   
 
Now that we have established there are no violations of any assumption, we can continue 
with our model constructions.  
 
 
Model Construction 
Firstly, we build what’s called a null model (it is a null model with a random intercept). In 
data structures with hierarchical data (Figure 4), there are levels to the data. Here, we 
have players within condition. There is a grouping variable (i.e. the practice drill) and each 
player within the drill.  
Here, the null model serves to confirm if multi-level modelling is necessary. In this case, 
we are assessing if having player AND condition specified and built as random eNects is 
necessary. It also serves as a ‘baseline’ model with no predictors so we can assess the 
random eNects only.  
 

 
Figure 4. Hierarchical data structure commonly seen in sport.  
 
We use the lmer function, followed by our dependent variable (Indegree Importance) as 
a function of 1 that also factors individual diNerences in players into the formula. In other 
words, our formula is specifying Indegree Importance predicted by 1, that accounts for 
diNerent ‘baselines’ according to player. We also want to see if the condition (i.e. each 
practice drill) can provide some use and explanatory power to our model, so we build the 
below models. Logically, the second model should provide more utility than the first, 
assuming that each player AND each condition will have varying baselines compared to 
not having varying baselines. Visually, we know this is the case as we saw it in the 
boxplots graph above (Figure 3).  
If there is a lower AIC value and statistical significance, the models are statistically 
diNerent, and we retain the model 
with the lower AIC values and statistical significance. We will use the anova() function to 
compare the two models.  
 
``` {r} 
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library(lmerTest) 
## Our two null models are as follows:  
null_model1 <- lmer(indegree ~ 1 + (1|player)) ## only player specified as a random eNect 
null_model2 <- lmer(indegree ~ 1 + (1|player) + (1|condition)) ## both player and 
condition specified as random eNects 
 
anova(null_model1, null_model2) 
``` 
 
(Note that I also tried a null model that looked at whether it would be a better fit if player 
observations were nested within each condition. This is a more complex random eNects 
structure, so I won’t explain it here. But it didn’t provide a better model fit, so I discarded 
it)._ 
 
This output initially shows our models that we are comparing. You obtain an AIC value 
and a p-value from the comparison of the two models, which is showing that the 
inclusion of condition as a random eNect makes the model statistically diNerent to the 
model with just player as a random eNect. Consequently, because the condition is the 
only variable that diNers between the two models, we can conclusively say that condition 
statistically influences Indegree Importance. As such, we retain this baseline model: 
 

lmer(indegree ~ 1 + (1|player) + (1|condition)) 
 
Before we start to construct our models using the predictor variables, I want to check the 
normality of our residuals in this baseline model. This is one of our assumptions and a 
violation indicates a poorly fit model which means lowered accuracy and lower 
applicability of the model.  
 
```{r} 
plot(fitted(null_model2), resid(null_model2), abline(h = 0), ylim = c(20, -20)) 
``` 
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The plot shows a general pattern. That being, small errors at smaller fitted values and 
larger errors at large fitted values. This may reflect a violation of linearity in our null model. 
There is also a 'straight line' of error values across the top of the datapoints. Which is quite 
strange but we will see how this changes as we build then assess our models. Let's 
continue to see how both these things change as we fit further variables into our model 
in the way of fixed eNects.  
 
As this model and analysis is exploratory, we will use a step-up model construction 
approach. This approach has been popular in sports research (Henderson et al., 2019; 
Tribolet et al., 2021). Firstly, the baseline model (we will start with our null model) is 
compared to the next model with the singular addition of 1 fixed eNect. This way, we can 
conclusively state that the included fixed eNect is statistically the diNerence or not. If we 
include two or more fixed eNects, we don’t know which one is statistically contributing to 
the model. We will use the lme4 (Bates et al. 2015) and lmerTest (Kuznetsova et al. 2017) 
packages to construct and assess our models.  
 
Let's start with our variables that correlate highly with indegree scores (marks, handball 
eNiciency, kick eNiciency and shots on goal). 
For model 1, we will add marks as a fixed eNect.  
```{r} 
model1 <- lmer(indegree ~ marks + (1|player) + (1|condition), REML=FALSE)  
null_model2 <- lmer(indegree ~ 1 + (1|player) + (1|condition))  
anova(model1, null_model2)  
``` 
The comparison using an ANOVA shows lower AIC and a statistically significant 
diNerence for model 1.  
Consequently, we continue with model 1 and continue to add more fixed eNects with this 
model as our baseline.  
To be clear, model 1 may colloquially read as "Indegree predicted by marks, that caters 
for each players and conditions baseline".  
 
In addition to marks, we will now also add handball eMiciency into the next model.  
``` {r} 
model2 <- lmer(indegree ~ marks + hb_eN + (1|player) + (1|condition), REML=FALSE)  
anova(model1, model2)  
``` 
The comparison using an ANOVA shows lower AIC and significant diNerence for model 2.  
We continue with model 2.  
To be clear, model 2 may colloquially read as "Indegree predicted by marks and handball 
eNiciency, that caters for each players and conditions baseline".  
 
We will now add kick eMiciency.  
```{r} 
model3 <- lmer(indegree ~ marks + hb_eN + kick_eN + (1|player) + (1|condition), 
REML=FALSE)  
anova(model2, model3)  
``` 
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The comparison using an ANOVA shows slightly lower AIC and significant diNerences for 
model 3.  
We continue with model 3.  
 
``` {r} 
model4 <- lmer(indegree ~ marks + hb_eN + kick_eN + goals + (1|player) + (1|condition), 
REML=FALSE)  
anova(model3, model4)  
``` 
Here is our first instance where we reject the new model construction (i.e. model 4). This 
is based on a higher AIC value and not being statistically diNerent to model 3. This is 
saying that adding how many goals each player has does not statistically improve the 
prediction of Indegree Importance. 
As such, we can discard this model. We then continue again with model 3.  
 
``` {r} 
model5 <- lmer(indegree ~ marks + hb_eN + kick_eN + width + (1|player) + (1|condition), 
REML=FALSE)  
anova(model3, model5)  
``` 
Similar to the model 4, model 5 has a higher AIC and is not statistically diNerent to model 
3.  
Similar to model 4, the width of the drill does not predict or influence a players level of 
Indegree Importance.  
As such, we can discard this model.  
 
```{r}  
model6 <- lmer(indegree ~ marks + hb_eN + kick_eN + total_players + (1|player) + 
(1|condition), REML=FALSE) 
anova(model3, model6)  
``` 
Model 6 shows slightly lower AIC, but no statistically significant diNerence between the 
two models.  
There is an argument to continue with model 3 here, as the addition of total players hasn't 
provided statistically diNerent findings when we compare the two models. Additionally, 
they are essentially the same model statistically, but model 6 is more complex as it has 
one more variable than model 3. As such, we need to make a choice between which 
model to continue with. There is some practicality keeping the total players variable in 
the model as it provides a 'tangible' manipulation we can make during practice.  
 
I want to continue with model 6, which includes the total players.  
 
```{r} 
model7 <- lmer(indegree ~ marks + hb_eN + kick_eN + total_players + time + (1|player) + 
(1|condition), REML=FALSE) 
anova(model6, model7)  
``` 
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Model 7 has a higher AIC and isn't statistically diNerent, so we can discard it and keep 
model 6.  
 
 
Model Applicability and Comparison 
After we are happy with our model and the process of constructing it, we must assess a 
few things. Before that, let’s recap what information we have with our model so far.  
 

lmer(indegree ~ marks + hb_eN + kick_eN + total_players + (1|player) + (1|condition), 
REML=FALSE) 

 
Here, Indegree Importance is being predicted by marks, handball eNiciency, kick 
eNiciency and total players in the drill. These variables are what we call fixed eNects, 
which have systematic or a fixed eNect on Indegree Importance. We have also included 
player AND condition as random eNects. Here, these random eNects characterise the 
idiosyncrasies due to player and condition diNerences (as we saw above when we looked 
at the boxplots of each player and condition; Figures 1, 2 and 3). This mixture of fixed and 
random eNects is what makes the mixed model a mixed model.  
We have reached this model by comparing a full model (with the fixed eNects in question) 
against a reduced model without the fixed eNects question. We have used the anova() 
function to compare models and subsequently continued with the model if it had a lower 
AIC value and was statistically diNerent. However, model6 (our current model just above) 
only had a slightly lower AIC compared to model3 using the step-up approach. I kept it as 
it has a slightly lower AIC and the practicality of having the fixed eNects included seemed 
useful. This is where understanding the data and having knowledge from the field and 
area you work in is crucial. Is it worth retaining a variable when it may make the model 
more complex? The knowledge of the practitioner/researcher is crucial.  
 
Before we assess the results of our final model and summarise our findings, we must first 
check some assumptions of the ‘fit’ of our model (i.e. how suitable are the predictions, or 
the fitted values of the model) and ensure it does not violate some key assumptions. This 
will be in the second part of this article, which will be published separately.  
 
Conclusion 
Linear mixed models are a powerful and flexible way to analyse sports data. The inclusion 
of both fixed and random eNects allow practitioners and researchers the possibility to 
appropriately analyse datasets with repeated measures, missing data and longitudinal 
data to help increase the accuracy and practicality of the findings. We must firstly meet 
the relevant statistical assumptions to ensure our findings are unbiased, reliable and 
accurate. We can then build a null (i.e. base) model and then use a step-up construction 
method to add fixed eNects (predictor variables) to assess their aNect on our dependent 
variable (i.e. Indegree Importance).  
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