
© 2025, RHYS TRIBOLET
Dec 2025

Social networks in sport
What are they and how can we visualise them?

Social networks are a powerful way to showcase multiple dynamic elements of sports
performance. This guide will show you how to collect and structure the data to produce
an appealing and informative visual.

TL;DR

o Social networks in sport are representations of interactions between players,
where the interactions are eCective passes

o We can create a visually appealing and informative visual/plot, that shows within-
team network structure, key contributors and overall team behaviour

o Social network metrics and graphs can be used to inform decision-making
processes on tactics, player evaluations and training design

Estimated reading time: ~5 minutes

© 2025, RHYS TRIBOLET
Dec 2025

Table of Contents
• What are social networks?
• How to build a social network visualisation in R
• Useful applications of social networks
• Conclusion
• References

What are social networks?
The interaction of group members and the relationships between members within a team
can be quantified. This is social network analysis (also known as complex network
analyses or passing network analysis). In sport, we can analyse the passing sequences
between the team members and visualise the interactions between players over a game.

“Half back passes to the centre, back to the wing, back to the centre… centre holds it,
holds it, holds it…”

Kent Brockman – Season 9, Episode: “The Cartridge Family”

This small piece from The Simpsons Kent Brockman is essentially describing what a
social network is. He is describing who is passing to who. We want to do what he is doing,
but through data.

While I will not go into the depths of specific metrics within social network analyses, this
approach can supplement traditional metrics and re-conceptualise what performance
means from a more dynamic perspective (Ribeiro et al., 2017). Additionally, this
reconceptualization that teams are a social network places players as nodes, that are
connected through an informational exchange, i.e. passing, which results in patterns of
interaction with other teammates. A simple graph is below (Figure 1).

© 2025, RHYS TRIBOLET
Dec 2025

Figure 1. We have 5 players here, A-E. In total, there has been 7 passes. Player A has made three
passes to three di@erent players, player B has made two passes and received one, player C has
made one pass, player D has made one pass and received two and player E has received three
passes. The arrows indicate the direction of the pass.

How to build a social network visualisation?
We must first start with what is called an adjacency matrix. This matrix provides us with
this weird, complex table of numbers but crucially, it quantifies the number of
interactions or passes that each member of the team has completed, and with who.

I have put together an excel file for those wanting to follow along. There are instructions
included within the file in the first sheet along the top. There are four tables, (1) for the
passing list, (2) for allocating player names to an ID number, (3) a reactive adjacency
matrix for team 1 and (4) a reactive adjacency matrix for team 2. There are two tables for
adjacency matrices if you are collecting training data and have two teams opposing each
other.

Adjacency_Matrix_Rhys_Tribolet.xlsx

We manually code using our passing list (Figure 2), which then (using excel functions) is
coded into an adjacency matrix (Figure3). Once we have an adjacency matrix that has
some passes and connections in it, we import it into R.

Figure 2. An example passing list, showing the passer and receiver.

© 2025, RHYS TRIBOLET
Dec 2025

Figure 3. Our adjacency matrix that is going to be imported into R from Excel.

The excel file above has an example passing list already in it (Figure 2), which we will use
to build the plot above. We will import the second sheet from the file (Figure 3). This sheet
has the pure adjacency matrix. First, let’s load the packages we need in R.

library(readxl) # import excel file
library(tidyverse) # general data wrangling
library(viridis) # colour palettes
library(fields) # create legend for plot
library(Matrix) # build matrix
library(igraph) # for general network-related manipulations and plot

Here, we will load the data into R, rename variables (this can be done however you’d like)
then convert it to an adjacency matrix.
team1 <- read_excel("Adjacency_Matrix_Rhys_Tribolet.xlsx", sheet = 2, col_names =
FALSE) # colnames must be false
rownames(team1) <- colnames(team1) <-
c("A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T")
team1 <- as.matrix(team1)

We then use the igraph package to make a graph object from the adjacency matrix.
graph_obj_weighted <- graph_from_adjacency_matrix(team1, mode = "directed",
weighted = TRUE)

We make an edge list from the graph object,
edge_list <- as_data_frame(graph_obj_weighted, what = "edges")

edge_list2 <- edge_list %>%
 rowwise() %>%
 mutate(pair = paste(sort(c(from, to)), collapse = "-"))

get the paired sums of each interaction,
pair_sums <- edge_list %>%
 rowwise() %>%
 mutate(pair = paste(sort(c(from, to)), collapse = "-")) %>%
 ungroup() %>%
 group_by(pair) %>%
 summarise(interactions = sum(weight))

© 2025, RHYS TRIBOLET
Dec 2025

then join pair_sums dataframe onto the edge list.
We must join each of these together to get the edges/passes aligned with each node, i.e.
player. This ensures each pass is aligned with the actual player that made it or received
it.
edge_list3 <- edge_list2 %>%
 left_join(pair_sums, by = "pair")

Lastly, we assign a variable to the number of interactions. This is needed later to assign
weights to the lines and arrows (i.e. their technical name is edges) in our plot.
E(graph_obj_weighted)$weight <- edge_list3$weight

Build our plot
Now, we can use the igraph package to construct our plot.

The baseline plot looks something like this (Figure 4). This graph does change each time
you run this line of code though, so this layout will be diCerent to yours.
plot(graph_obj_weighted)

As you can see, it is hard to ascertain much information from this graph. But we can add
layers to the plot, so we can specify a range of characteristics.
Using these layers, I later manipulate the size and colour of the nodes, the arrow/edge
width, add a curvature to the edges and alter the actual layout of the graph (i.e. circular).
I also manipulate the node labels using a rule. But first, we must specify our colour
palette based on social network data. This data is generated from our raw adjacency
matrix (team1 variable).

Specify colour palette
Here, we specify the colour palette for our nodes and what values we assign to it. I chose
to scale the colours according to a social network metric called Indegree Node, which is
a value assigned to each player showing the number of players they receive passes from.

© 2025, RHYS TRIBOLET
Dec 2025

It reflects how many players have successfully reached them within the network. You can
change this to whichever metric you like (e.g. betweenness, incloseness, outcloseness,
centrality node etc).
create outdegree and indegree node values
indegree node colour palette
specify our values for Indegree node
direction -1 changes the scale, so that darker colours = higher values, and lighter
colours = lower values
options for colour palletes = https://cran.r-
project.org/web/packages/viridis/vignettes/intro-to-viridis.html

outdeg_node <- rowSums(team1 != 0)
indeg_node <- colSums(team1 != 0)
col_pal <- cividis(max(indeg_node) + 1, direction = -1)
vertex_col <- col_pal[indeg_node + 1]

Now, let’s plot!

plot(graph_obj_weighted,
 vertex.color = vertex_col,
 vertex.size = outdeg_node*9,
 vertex.label.cex = 1.5,
 vertex.label.color = ifelse(
 outdeg_node <= 1,
 "black", "white"),
 edge.color = "black",
 edge.arrow.size = 0.5,
 layout=layout_in_circle(graph_obj_weighted),
 edge.curved = 0.15,
 edge.width = E(graph_obj_weighted)$weight)
text(0.1, -1.15, "colour = receiving importance, size = distributing importance", font = 3,
cex = 1.2)

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

© 2025, RHYS TRIBOLET
Dec 2025

Okay, already we can see a much more appealing graph that conveys more information.
To here, the vertex/node colour represents a metric that shows a players receiving
importance, the node/vertex size represents a metric that shows the players distributing
importance and the edges/lines represent weighted passes (i.e. darker lines indicate
more passes between those two players). General other features here include adding
curvature to the edges/lines, the circular layout and the text down the bottom.

Next, we construct and insert our colour bar scale/legend.
pal_nodes <- cividis(100, direction = -1) ## create node pallete with vridis package
V(graph_obj_weighted)$indegree <- degree(graph_obj_weighted, mode = "in") ## specify
indegree values from graph matrix
vals <- V(graph_obj_weighted)$indegree ## assign to vals
tick_vals <- pretty(range(vals), n = 5)
image.plot(legend.only=TRUE, zlim=range(vals), col=pal_nodes, legend.lab =
expression(bold("Indegree Node")), legend.cex = 1.2)

© 2025, RHYS TRIBOLET
Dec 2025

Now, we build our edge width (arrow thickness) scale/legend.
edge_vals <- sort(unique(edge_list3$weight))

Specify the position for the 3 lines
ys <- c(0.8, 0.9, 0.1) ## set position of the lines based oC the number of edge values
if more passes/interactions, then add here

Create segments and corresponding length and width according to edge values
(edge_vals)
segments(
 x0 = 0.8, y0 = ys,
 x1 = 1.0, y1 = ys,
 lwd = edge_vals)
text(0.7, ys, labels = edge_vals, cex = 1, pos = 4, oCset = 0.5)
text(0.85, 1.15, "Number of Passes", font = 2, cex = 0.95)

© 2025, RHYS TRIBOLET
Dec 2025

Whilst it wasn’t part of my original plan, I also included a node size legend too. I'm still
unsure on how it fits with everything, but you can be the judge.

node_vals <- pretty(range(outdeg_node), n = 3)
node_sizes <- node_vals * 30

x/y positions
xs <- rep(0.9, length(node_sizes))
ys <- seq(-0.5, 0.3, length.out = length(node_sizes))

draw example nodes
points(xs, ys, pch = 21, bg = "white", cex = node_sizes / 10)

add labels
text(0.77, ys,
 labels = node_vals,
 cex = 0.9,
 pos = 4)
text(0.85, 0.5, "Outdegree Node", font = 2, cex = 0.95)

© 2025, RHYS TRIBOLET
Dec 2025

And voila! We have our final graph/visual that shows a weighted social network. What
this graph now shows:

o Bigger nodes indicate a player has a greater level of distributing importance.
Node size represents the outdegree node values (i.e. number of players that
each player has made passes to).

o Darker nodes indicate a player has a greater level of receiving importance.
Node colour represents indegree node values (i.e. number of players that each
player has received passes from).

o Thicker edges/lines indicate a stronger passing relationship between two
players. Edge width/arrow thickness represents the number of passes between
each respective node/player.

o The curvature in our edges ensures we can see bi-directional interactions
o The arrowhead shows the direction of the pass, i.e. who they passed to

© 2025, RHYS TRIBOLET
Dec 2025

From this graph, we could infer the following:
o Key receivers: D, E , L, Q, T
o Key distributers/Passers: A, D, L, Q
o Hybrid (both receive and distribute possession): D, L, Q
o Minimal importance in the network: F, K, O
o Bees dick away from being baked by a coach: I, P
o Notes: H & Q share strong relationship

Useful applications of social networks

o Evaluate player input and contribution into the team passing network
o Map player roles and performances, identifying influential and key players
o Classify players and their contribution. As above, we can classify players as

receivers, distributers or hybrid
o Identify and reveal key tactical contributors and patterns (your own team and

opposition)
o Assess how these social networks change and adapt relative to diLerent

manipulations we make in training.

Conclusion
Once we have collected our pass-by-pass data using the excel template provided, we can
import our adjacency matrix into R. From there, we can create a number of social network
metrics that reflect diCerent passing behaviours in our team and visualise these
behaviours to create an appealing and informative visual to help assess individual and
team performance. This could inform decision-making on things such as player and team
reviews, tactical strategy, longitudinal player and team development and opposition
tactics and behaviours, to name a few.

Let me know if you have any questions or need clarification on anything. I’d be interested
to hear if you use a diCerent way to visualise social network data and how that has been
interpreted by other practitioners and/or coaches.

Cheers,
Rhys

References
Ribeiro, J., Silva, P., Duarte, R., Davids, K. & Garganta, J. (2017), Team Sports Performance
Analysed Through the Lens of Social Network Theory: Implications for Research and
Practice, Sports Med, 47, 1689-1696.

