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Social networks in sport 
What are they and how can we visualise them?  

 

 
 
Social networks are a powerful way to showcase multiple dynamic elements of sports 
performance. This guide will show you how to collect and structure the data to produce 
an appealing and informative visual.  
 
TL;DR 

o Social networks in sport are representations of interactions between players, 
where the interactions are eCective passes 

o We can create a visually appealing and informative visual/plot, that shows within-
team network structure, key contributors and overall team behaviour  

o Social network metrics and graphs can be used to inform decision-making 
processes on tactics, player evaluations and training design 

 
Estimated reading time: ~5 minutes 
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What are social networks? 
The interaction of group members and the relationships between members within a team 
can be quantified. This is social network analysis (also known as complex network 
analyses or passing network analysis). In sport, we can analyse the passing sequences 
between the team members and visualise the interactions between players over a game.  
 

  
“Half back passes to the centre, back to the wing, back to the centre… centre holds it, 
holds it, holds it…”  

Kent Brockman – Season 9, Episode: “The Cartridge Family” 
 
This small piece from The Simpsons Kent Brockman is essentially describing what a 
social network is. He is describing who is passing to who. We want to do what he is doing, 
but through data. 
 
While I will not go into the depths of specific metrics within social network analyses, this 
approach can supplement traditional metrics and re-conceptualise what performance 
means from a more dynamic perspective (Ribeiro et al., 2017). Additionally, this 
reconceptualization that teams are a social network places players as nodes, that are 
connected through an informational exchange, i.e. passing, which results in patterns of 
interaction with other teammates. A simple graph is below (Figure 1).  
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Figure 1. We have 5 players here, A-E. In total, there has been 7 passes. Player A has made three 
passes to three di@erent players, player B has made two passes and received one, player C has 
made one pass, player D has made one pass and received two and player E has received three 
passes. The arrows indicate the direction of the pass.  
 
How to build a social network visualisation?  
We must first start with what is called an adjacency matrix. This matrix provides us with 
this weird, complex table of numbers but crucially, it quantifies the number of 
interactions or passes that each member of the team has completed, and with who.  
 
I have put together an excel file for those wanting to follow along. There are instructions 
included within the file in the first sheet along the top. There are four tables, (1) for the 
passing list, (2) for allocating player names to an ID number, (3) a reactive adjacency 
matrix for team 1 and (4) a reactive adjacency matrix for team 2. There are two tables for 
adjacency matrices if you are collecting training data and have two teams opposing each 
other.  
 

Adjacency_Matrix_Rhys_Tribolet.xlsx 
 
We manually code using our passing list (Figure 2), which then (using excel functions) is 
coded into an adjacency matrix (Figure3). Once we have an adjacency matrix that has 
some passes and connections in it, we import it into R.  
 

 
Figure 2. An example passing list, showing the passer and receiver.  
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Figure 3. Our adjacency matrix that is going to be imported into R from Excel.  
 
The excel file above has an example passing list already in it (Figure 2), which we will use 
to build the plot above. We will import the second sheet from the file (Figure 3). This sheet 
has the pure adjacency matrix. First, let’s load the packages we need in R.  
 
library(readxl)       # import excel file 
library(tidyverse)    # general data wrangling 
library(viridis)      # colour palettes 
library(fields)       # create legend for plot 
library(Matrix)       # build matrix 
library(igraph)       # for general network-related manipulations and plot 
 
Here, we will load the data into R, rename variables (this can be done however you’d like) 
then convert it to an adjacency matrix. 
team1 <- read_excel("Adjacency_Matrix_Rhys_Tribolet.xlsx", sheet = 2, col_names = 
FALSE) # colnames must be false 
rownames(team1) <- colnames(team1) <- 
c("A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T") 
team1 <- as.matrix(team1) 
 
We then use the igraph package to make a graph object from the adjacency matrix. 
graph_obj_weighted <- graph_from_adjacency_matrix(team1, mode = "directed", 
weighted = TRUE) 
 
We make an edge list from the graph object,  
edge_list <- as_data_frame(graph_obj_weighted, what = "edges") 
 
edge_list2 <- edge_list %>% 
  rowwise() %>% 
  mutate(pair = paste(sort(c(from, to)), collapse = "-")) 
 
get the paired sums of each interaction, 
pair_sums <- edge_list %>% 
  rowwise() %>% 
  mutate(pair = paste(sort(c(from, to)), collapse = "-")) %>% 
  ungroup() %>% 
  group_by(pair) %>% 
  summarise(interactions = sum(weight)) 
 



© 2025, RHYS TRIBOLET 
Dec 2025 

then join pair_sums dataframe onto the edge list.  
We must join each of these together to get the edges/passes aligned with each node, i.e. 
player. This ensures each pass is aligned with the actual player that made it or received 
it.   
edge_list3 <- edge_list2 %>% 
  left_join(pair_sums, by = "pair") 
 
Lastly, we assign a variable to the number of interactions. This is needed later to assign 
weights to the lines and arrows (i.e. their technical name is edges) in our plot. 
E(graph_obj_weighted)$weight <- edge_list3$weight 
 
 
Build our plot 
Now, we can use the igraph package to construct our plot.  
 
The baseline plot looks something like this (Figure 4). This graph does change each time 
you run this line of code though, so this layout will be diCerent to yours.  
plot(graph_obj_weighted) 

 
As you can see, it is hard to ascertain much information from this graph. But we can add 
layers to the plot, so we can specify a range of characteristics.  
Using these layers, I later manipulate the size and colour of the nodes, the arrow/edge 
width, add a curvature to the edges and alter the actual layout of the graph (i.e. circular). 
I also manipulate the node labels using a rule. But first, we must specify our colour 
palette based on social network data. This data is generated from our raw adjacency 
matrix (team1 variable).  
 
Specify colour palette 
Here, we specify the colour palette for our nodes and what values we assign to it. I chose 
to scale the colours according to a social network metric called Indegree Node, which is 
a value assigned to each player showing the number of players they receive passes from. 
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It reflects how many players have successfully reached them within the network. You can 
change this to whichever metric you like (e.g. betweenness, incloseness, outcloseness, 
centrality node etc).   
## create outdegree and indegree node values 
## indegree node colour palette 
## specify our values for Indegree node 
## direction -1 changes the scale, so that darker colours = higher values, and lighter 
colours = lower values 
## options for colour palletes = https://cran.r-
project.org/web/packages/viridis/vignettes/intro-to-viridis.html 
 
outdeg_node <- rowSums(team1 != 0) 
indeg_node <- colSums(team1 != 0)  
col_pal <- cividis(max(indeg_node) + 1, direction = -1) 
vertex_col <- col_pal[indeg_node + 1] 
 
Now, let’s plot!  
 
plot(graph_obj_weighted, 
     vertex.color = vertex_col,                                
     vertex.size = outdeg_node*9,   
     vertex.label.cex = 1.5,                                   
     vertex.label.color = ifelse( 
       outdeg_node <= 1, 
        "black", "white"),                             
     edge.color = "black",                                     
     edge.arrow.size = 0.5,                                    
     layout=layout_in_circle(graph_obj_weighted), 
     edge.curved = 0.15, 
     edge.width = E(graph_obj_weighted)$weight) 
text(0.1, -1.15, "colour = receiving importance, size = distributing importance", font = 3, 
cex = 1.2) 
 

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
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Okay, already we can see a much more appealing graph that conveys more information. 
To here, the vertex/node colour represents a metric that shows a players receiving 
importance, the node/vertex size represents a metric that shows the players distributing 
importance and the edges/lines represent weighted passes (i.e. darker lines indicate 
more passes between those two players). General other features here include adding 
curvature to the edges/lines, the circular layout and the text down the bottom. 
 
Next, we construct and insert our colour bar scale/legend.  
pal_nodes <- cividis(100, direction = -1) ## create node pallete with vridis package 
V(graph_obj_weighted)$indegree <- degree(graph_obj_weighted, mode = "in") ## specify 
indegree values from graph matrix 
vals <- V(graph_obj_weighted)$indegree ## assign to vals  
tick_vals <- pretty(range(vals), n = 5) 
image.plot(legend.only=TRUE, zlim=range(vals), col=pal_nodes, legend.lab = 
expression(bold("Indegree Node")), legend.cex = 1.2)  
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Now, we build our edge width (arrow thickness) scale/legend. 
edge_vals <- sort(unique(edge_list3$weight)) 
 
# Specify the position for the 3 lines 
ys <- c(0.8, 0.9, 0.1) ## set position of the lines based oC the number of edge values 
## if more passes/interactions, then add here 
 
Create segments and corresponding length and width according to edge values 
(edge_vals) 
segments( 
  x0 = 0.8, y0 = ys, 
  x1 = 1.0, y1 = ys, 
  lwd = edge_vals) 
text(0.7, ys, labels = edge_vals, cex = 1, pos = 4, oCset = 0.5) 
text(0.85, 1.15, "Number of Passes", font = 2, cex = 0.95) 
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Whilst it wasn’t part of my original plan, I also included a node size legend too. I'm still 
unsure on how it fits with everything, but you can be the judge. 
 
node_vals <- pretty(range(outdeg_node), n = 3) 
node_sizes <- node_vals * 30 
 
# x/y positions 
xs <- rep(0.9, length(node_sizes)) 
ys <- seq(-0.5, 0.3, length.out = length(node_sizes)) 
 
# draw example nodes 
points(xs, ys, pch = 21, bg = "white", cex = node_sizes / 10) 
 
# add labels 
text(0.77, ys, 
     labels = node_vals, 
     cex = 0.9, 
     pos = 4) 
text(0.85, 0.5,  "Outdegree Node", font = 2, cex = 0.95) 
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And voila! We have our final graph/visual that shows a weighted social network. What 
this graph now shows: 

o Bigger nodes indicate a player has a greater level of distributing importance. 
Node size represents the outdegree node values (i.e. number of players that 
each player has made passes to).  

o Darker nodes indicate a player has a greater level of receiving importance. 
Node colour represents indegree node values (i.e. number of players that each 
player has received passes from).  

o Thicker edges/lines indicate a stronger passing relationship between two 
players. Edge width/arrow thickness represents the number of passes between 
each respective node/player.  

o The curvature in our edges ensures we can see bi-directional interactions 
o The arrowhead shows the direction of the pass, i.e. who they passed to 
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From this graph, we could infer the following: 
o Key receivers: D, E , L, Q, T 
o Key distributers/Passers: A, D, L, Q 
o Hybrid (both receive and distribute possession): D, L, Q 
o Minimal importance in the network: F, K, O 
o Bees dick away from being baked by a coach: I, P 
o Notes: H & Q share strong relationship 

 
Useful applications of social networks 

o Evaluate player input and contribution into the team passing network 
o Map player roles and performances, identifying influential and key players 
o Classify players and their contribution. As above, we can classify players as 

receivers, distributers or hybrid 
o Identify and reveal key tactical contributors and patterns (your own team and 

opposition)  
o Assess how these social networks change and adapt relative to diLerent 

manipulations we make in training. 
 
Conclusion 
Once we have collected our pass-by-pass data using the excel template provided, we can 
import our adjacency matrix into R. From there, we can create a number of social network 
metrics that reflect diCerent passing behaviours in our team and visualise these 
behaviours to create an appealing and informative visual to help assess individual and 
team performance. This could inform decision-making on things such as player and team 
reviews, tactical strategy, longitudinal player and team development and opposition 
tactics and behaviours, to name a few. 
 
Let me know if you have any questions or need clarification on anything. I’d be interested 
to hear if you use a diCerent way to visualise social network data and how that has been 
interpreted by other practitioners and/or coaches.  
 
Cheers, 
Rhys  
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